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Abstract

We present an approximate analysis of a discrete–time queue with correlated ar-
rival processes of the so–called M |G|∞ type. The proposed heuristic approximations
are developed around asymptotic results in the heavy and light traffic regimes. Inves-
tigation of the system behavior in light traffic quantifies the differences between the
gradual M |G|∞ inputs and the point arrivals of a classical GI|GI|1 queue. In heavy
traffic, salient features are effectively captured by the exponential distribution and the
Mittag–Leffler special function, under short– and long–range dependence respectively.
By interpolating between the heavy and light traffic extremes we derive approxima-
tions to the queue size distribution, applicable to all traffic intensities. We examine the
accuracy of these expressions and discuss possible extensions of our results in several
numerical examples.

1 Introduction

The conclusions of a series of measurement studies demonstrating that network traffic ex-
hibits persistent long term correlations have spurred recent activity in the study of queueing
systems with correlated arrival processes. Analytical results reveal that, when strong de-
pendencies are present, diverse queueing patterns may arise, in contrast to the familiar
exponential decay encountered in traditional traffic models with bounded exponential mo-
ments.

∗The work of this author was supported through NSF Grant NSFD CDR-88-03012 and the Army Research
Laboratory under Cooperative Agreement No. DAAL01-96-2-0002.
†The work of this author was supported partially through NSF Grant NSFD CDR-88-03012, NASA Grant

NAGW277S and the Army Research Laboratory under Cooperative Agreement No. DAAL01-96-2-0002.
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In this paper we deal with a discrete time queue, viewed as a surrogate for a network
multiplexer, driven by an M |G|∞ arrival stream. Both the discrete time M |G|∞ process
considered here and its continuous time variant are among the traffic models arising from
large aggregations of on/off sources, that have attracted a great deal of attention. Reasons
for this, such as flexibility in representing correlation functions of actual traffic traces, are
discussed in [9]. A fluid queue fed by the continuous time version of the process has been
studied at least as early as 1974 [3]. Later, Cox notices that the M |G|∞ busy server process
with heavy tailed G is a second order asymptotically self–similar process [4].

Here, we are interested in the entire steady–state queue length distribution at a multi-
plexer fed by the M |G|∞ arrival process. For arbitrary pmf G, the system lacks the desired
Markovian structure and a calculation using numerical inversion techniques, e.g. [13], is not
possible, since no z-transform expressions are available. An exception is provided by the ge-
ometric case, where a two dimensional Markov chain formulation and a functional equation
for the z-transform is given in [2].

To circumvent the difficulties of an exact analysis, one may rely on information gleaned
from various asymptotic regimes. A promising approach consists of deriving approximations
from the analysis of large buffer asymptotics [7, 8, 10]; these estimates are exact in the limit
as the buffer level goes to infinity.

Our objective is to explore alternative approximations to the queue length probabilities,
developed around a combination of light and heavy traffic asymptotics. Such approximations
become exact in the limit as the traffic intensity goes to zero and one respectively. In light
traffic we take advantage of the fact that the M |G|∞ arrival process is obviously “Poisson
driven”, so that the Reiman–Simon theory [12] applies, under a bounded exponential moment
assumption. The resulting light traffic limits of the queue with M |G|∞ arrivals differ from
those of a classical GI|GI|1 queue. This is a manifestation of the fact that work that joins
the system gradually, as is the case with M |G|∞ inputs, generates less queueing than work
that arrives instantaneously. From the heavy traffic regime, we collect the associated limit
distribution of the queue size: This is given through the exponential function in the standard
short–range dependent setup, and the Mittag–Leffler special function in the case where the
M |G|∞ process is long–range dependent. The approximation to the queue size distribution
is subsequently generated by interpolating between the heavy and light traffic extremes. For
some common pmfs G the approximant assumes a simple final form. More interestingly, it
has the potential of capturing accurately the queue size distribution at small buffer sizes,
for which approximations based on large buffer asymptotics are usually ill fitted. On the
other hand, when G has finite exponential moment, we do not expect the heavy–light traffic
interpolation to be accurate for buffer sizes much larger than the maximum burst length: It
simply does not possess the correct decay rate – it does so only as the traffic intensity tends
to one, i.e., in the heavy traffic limit. Surprisingly, this drawback is often absent under long–
range dependence, since there are cases where the queue size distribution has hyperbolic
asymptotics with the same exponent for all traffic intensities! Then an approximation is
more valuable, especially when considering that, in the presence of heavy tails, alternative
estimates by means of simulation take an unreasonably long time to obtain. Yet, this is
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somewhat compromised by the unaivalability of rigorously established light traffic limits,
under long–range dependence. In Section 6 we rely on a postulated relationship, but the
problem is still unresolved.

The paper is organized as follows: The description of the system model is given in Section
2. Section 3 contains the main conclusions of the light and heavy traffic analyses. These are
the ingredients for the approximation, which is presented in Section 4 and discussed through
numerical examples in Section 5. Further extensions of the results are suggested in Section
6.

2 The System Model

We introduce the queueing model of interest, together with the required notation. We start
by presenting the M |G|∞ arrival processes and several of their properties; additional facts
can be found in [4, 10].

Consider a population of infinitely many information sources, operating in discrete–time.
Sources can be in one of two states, active or idle. During time slot [n, n+ 1), n = 0, 1, . . .,
βn+1 new sources become active. Source j, j = 1, . . . , βn+1 begins generating information by
the start of slot [n+1, n+2), its activity period has duration σn+1,j (in number of slots). While
active, each source emits information at a constant rate of one information unit (packet) per
time slot. After its activity period expires, each source switches off permanently, never to
generate packets again. Let bn denote the number of active sources, or equivalently, the
number of packets generated by the active sources at the beginning of time slot [n, n + 1).
If initially (i.e., at time n = 0) there were already b active sources, we denote by σ0,j the
residual activity duration (in time slots) for the jth active source, j = 1, . . . , b.

Throughout, the IN–valued rvs b, {βn+1, n = 0, 1, . . .}, {σn,j, n = 1, 2, . . . ; j = 1, 2, . . .}
and {σ0,j, j = 1, 2, . . .} satisfy the following assumptions: (i) These rvs are mutually inde-
pendent; (ii) The rvs {βn+1, n = 0, 1, . . .} are i.i.d. Poisson rvs with parameter λ > 0; (iii)
The rvs {σn,j , n = 1, . . . ; j = 1, 2, . . .} are i.i.d. with common pmf G on {1, 2, . . .}. Let
σ be a generic IN–valued rv distributed according to the pmf G, assume throughout that
E [σ] < ∞; (iv) The rvs {σ0,j, j = 1, 2, . . .} are i.i.d. IN–valued rvs distributed accord-
ing to the equilibrium pmf Ge associated with G, i.e., if σe denotes a generic IN–valued rv
distributed according to the pmf Ge, then

P [σe = n] =
P [σ ≥ n]

E [σ]
, n = 1, 2, . . . (1)

In summary, the process {bn, n = 0, 1, . . .} results from discrete–time Poisson(λ) arrivals
of information sessions, where the session duration is distributed according to the pmf G
and the packet generation rate of an ongoing session is one packet per time slot. Under the
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enforced assumptions {bn, n = 0, 1, . . .} can be identified as the busy server process of a
discrete–time M |G|∞ queue; for this reason the packet arrival process {bn, n = 0, 1, . . .} is
referred to as the M |G|∞ arrival process. The following proposition shows that {bn, n =
0, 1, . . .} is a correlated process, with time dependencies controlled by the tail of σ [10].

Proposition 2.1 If b is taken to be a Poisson rv with parameter λE [σ], then the process
{bn, n = 0, 1, . . .} is a (strictly) stationary ergodic process with the properties:

(a) For each n = 0, 1, . . ., the rv bn is a Poisson rv with parameter λE [σ];
(b) Its covariance function is given by

cov(bn+j , bn) = λE
[
[σ − j]+

]
= λE [σ] P [σe > j] , n, j = 0, 1, . . .

(c) Its index of dispersion of counts (IDC) is given by

IDC ≡
∞∑
j=0

cov(bn+j, bn) = λE [σ]
∞∑
j=0

P [σe > j] =
λ

2
E [σ(σ + 1)] ,

and the process is short–range dependent (i.e., IDC finite) if and only if E [σ2] is finite.

We now feed this M |G|∞ arrival stream {bn, n = 0, 1, . . .} into a discrete–time single
server queue with infinite buffer capacity. Such a queueing system routinely serves as a
model for a network multiplexer: If qn denotes the number of packets remaining in the
multiplexer buffer by the end of slot [n−1, n), and the multiplexer output link can transmit
c packets/slot, then the buffer content sequence {qn, n = 0, 1, . . .} evolves according to the
Lindley recursion

q0 = 0; qn+1 = [qn + bn+1 − c]
+, n = 0, 1, . . . (2)

From Part (a) of Proposition 2.1 the average input rate to the multiplexer is E [bn] =
λE [σ], and the system is stable if the traffic intensity ρ ≡ λE [σ] /c satisfies ρ < 1. In that
case qn =⇒n q, where the IR–valued rv q is the stationary queue size in the multiplexer
buffer. We are interested in evaluating

P (b, ρ) ≡ Pρ [q > b] , b ≥ 0 and Qm(ρ) ≡ Eρ [qm] , 0 ≤ ρ < 1, m = 1, 2,

i.e., the probability that the stationary queue size exceeds b, and the queue size first and sec-
ond moments, when the traffic intensity is ρ. To that end we develop simple approximations
that all flow from asymptotic results under heavy and light traffic conditions.

3 Heavy and Light Traffic

The interpolation approximation we have in mind hinges on the availability of explicit ex-
pressions for limits of system quantities as ρ→ 1 (heavy traffic limits), and derivatives with
respect to ρ as ρ→ 0 (light traffic derivatives). It thus requires examination of the behavior
of the queue with M |G|∞ arrivals under each one of these two asymptotic regimes.
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Light Traffic We start with the light traffic regime. The right-hand derivatives at ρ = 0
of the various metrics of interest are evaluated using the Reiman–Simon technique [12]. For
the system to be in the domain of applicability of the Reiman–Simon results, an assumption
on finiteness of the exponential moment of σ is needed.

Assumption (A) There exists θ? > 0 such that E
[
eθσ
]
<∞ for θ < θ?.

The detailed light traffic analysis of the queue with M |G|∞ arrivals is provided in [15]. We
summarize the conclusions in the following.

Proposition 3.1 Consider the Lindley recursion (2) with integer release rate c = 1, 2, . . .,
and let b = 0,1, . . . . Under Assumption (A) it holds that

(a) For each n = 0, 1, . . . , c

∂n

∂ρn
P (b, 0+) = 0 and

dn

dρn
Qm(0+) = 0, m = 1, 2, . . . . (3)

(b) In addition, for c = 1,

E [σ]2
∂2

∂ρ2
P (b, 0+) = E

[
[σ − b]+

2
]
P [σ > b] + 2 E

[
[σ − b]+

]2
−3 E

[
[σ − b]+

]
P [σ > b] + P [σ > b]2 (4)

d2

dρ2
Q1(0+) =

E[σ2]

E [σ]
(5)

and
d2

dρ2
Q2(0+) =

1

2

(
1 +

E[σ2]2

E [σ]2

)
. (6)

Proposition (3.1) delineates a light traffic behavior for the queue with M |G|∞ arrivals
that is certainly different from the one of a classical GI|GI|1 queue. As seen from (3), when
c = 1, in which case the multiplexer can serve no more than one source per time slot, the first
derivative of the tail probability is zero. Hence, in a Taylor expansion of Pρ [q > b] around
ρ = 0 the linear term in ρ would offer no contribution. In contrast, the stationary workload
W in a single server M |G|1 queue is known to satisfy Pρ [W > x] ∼ ρ(1− Ge(x)) (ρ → 0),
that is, in the classical queueing setup the corresponding expansion starts with a non-zero ρ
term. For M |G|∞ arrivals it is the second derivative (4) which is the most informative. This
highlights the role of the activity duration rv σ, through both its distribution and its first
two moments. Notice that even if Assumption (A) were to be relaxed, (4) shows that for
Pρ [q > b] to decay like ρ2 for small ρ it is necessary that E [σ2] be finite. If E [σ2] =∞, as
is the case for long–range dependent M |G|∞ arrivals, expression (4) yields infinity and ρ2 is
no longer the correct order of decay. A different, perhaps smaller exponent should be sought
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in the long–range dependent case (see (21)). Finally, relations (3) reflect (though in a rough
manner) the statistical multiplexing gain: Since the first non-zero contribution to a the tail
probability is no lower than ρc+1, (3) implies that increasing the multiplexer release rate c
while maintaining the same traffic intensity ρ would result in a decreasing tail probability
Pρ [q > b], as could be expected.

Heavy traffic Considered next is the behavior of the queue with M |G|∞ arrivals in heavy
traffic, that is, as the arrival rate λE [σ] tends to the multiplexer release rate c from below.
Clearly, as the traffic intensity ρ converges to one the system becomes unstable and the
queue length grows unbounded. It is thus necessary to seek a suitable normalizer for the
queue length process, so that its normalized version has a non trivial heavy traffic limit.
This problem is typically addressed in a setup where the system of interest is embedded into
a family of queueing systems, parametrized by an integer, say l = 1, 2, . . ., ensuring that, as
l ↑ ∞, the appropriate trend to instability is established. Such an approach was pursued
in [16], providing a complete characterization of the arising heavy traffic limits. We tacitly
assume here that the heavy traffic limit of the stationary distribution coincides with the
stationary distribution of the heavy traffic limit, and gather the required results from [16] in
a convenient form:

Proposition 3.2 The heavy traffic limits of the stationary queue length distribution associ-
ated with (2) can be classified as follows:

(a) If E [σ2] <∞ then

lim
ρ→1

Pρ [(1− ρ) q > x] = exp

(
−

2E [σ]

E [σ2]
x

)
, x ≥ 0. (7)

(b) If P [σ > n] = n−α, n = 1, 2, . . ., with 1 < α < 2, then

lim
ρ→1

Pρ

[
(1− ρ)1/(α−1)q > x

]
= Eα−1

(
−

(α− 1)E [σ]

Γ(2− α)
xα−1

)
, x ≥ 0, (8)

where

Eν(x) ≡
∞∑
n=0

xn

Γ(νn+ 1)
, ν > 0, x ∈ IR, (9)

is the Mittag–Leffler special function [5].

Part (a) of Proposition 3.2 addresses the classical short–range dependent case, for which
the heavy traffic normalizer is (1−ρ) and the limiting heavy traffic distribution is exponential.
Part (b) deals with a long–range dependent M |G|∞ arrival process. Under long–range
dependence, the heavy traffic queue length distribution is expressed through a Mittag–Leffler
function with hyperbolic decay, while the power–law behavior of the heavy traffic normalizer
is (1 − ρ)1/(α−1). We mention that this result can be stated in a more general manner to
cover the situation where the tail of σ is regularly varying of order α, 1 < α < 2.
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The results under the light and heavy traffic regimes are subsequently combined into
approximations for all values of the traffic intensity.

4 Interpolation Approximations

Whenever Assumption (A) is satisfied, Pρ [q > b] is infinitely differentiable with respect to
ρ at ρ = 0, hence it can be approximated by bringing together heavy traffic limits and light
traffic derivatives into a Taylor series–like expansion. To this end we follow the approach
proposed in [6]. In passing, we also discuss approximations for Qm(ρ), m = 1, 2. The details
are as follows:

The interpolation method Consider the normalized queue length rv (1−ρ) q and define

F (x, ρ) ≡ Pρ [(1− ρ) q > x] , 0 ≤ ρ < 1, x ≥ 0 (10)

and
F (x, 1) ≡ lim

ρ→1
Pρ [(1− ρ) q > x] . (11)

Assume that partial derivatives of F (x, ρ) with respect to ρ, up to order n, at ρ = 0+,
are available. Construct F̂n(x, ρ), the nth order interpolation approximation to F (x, ρ), by
means of the polynomial

F̂n(x, ρ) ≡
n∑
i=0

ρi

i!

∂i

∂ρi
F (x, 0+) +

(
F (x, 1)−

n∑
i=0

1

i!

∂i

∂ρi
F (x, 0+)

)
ρn+1. (12)

Observe that

F̂n(x, 1) = F (x, 1) and
∂i

∂ρi
F̂n(x, 0+) =

∂i

∂ρi
F (x, 0+), i = 0, 1, . . . , n,

that is, F̂n(x, ρ) is precisely that unique n + 1 degree polynomial in ρ which matches the
n+ 1 partial derivatives of F (x, ρ) at ρ = 0+ and its heavy traffic limit. Now, by reversing
the (1− ρ) normalization in F̂n(x, ρ) we generate the nth order interpolation approximation
to Pρ [q > b] as

Pρ [q > b] ≈ F̂n((1− ρ) b, ρ). (13)

Note that, in principle, this may lie outside [0, 1], in which case it is obviously a poor
approximation. To calculate the quantities associated with (13) it remains to express the
partial derivatives appearing in (12) in terms of the light traffic derivatives of Pρ [q > b]. We
have

∂

∂ρ
F (x, 0+) =

∂

∂ρ
P (x, 0+) + x

∂

∂x
P (x, 0+) (14)
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and

∂2

∂ρ2
F (x, 0+) =

∂2

∂ρ2
P (x, 0+) + 2x

∂2

∂ρ∂x
P (x, 0+)

+2x
∂

∂x
P (x, 0+) + x2 ∂2

∂x2
P (x, 0+). (15)

In case additional light traffic information is available, repeated application of the chain rule
will yield higher order derivatives, as needed.

Approximate expressions We are now ready to write approximate expressions anchored
on the heavy and light traffic results of Section 3. Proposition 3.2(a) provides the limit (11)
that should be inserted in (12). Proposition 3.1(a) can be used to substitute for the partials
in (14) and then in (12). Thus, if the multiplexer release rate is c = 1, 2, . . ., the cth order
interpolation approximation to Pρ [q > b] is simply

Pρ [q > b] ≈ F̂c((1− ρ) b, ρ) = ρc+1 exp

(
−

2E [σ]

E [σ2]
(1− ρ) b

)
. (16)

More can be accomplished in the case c = 1, since Proposition 3.1(b) affords us a promising
2nd order interpolation approximation. Insertion of (15) in (12) yields

F̂2(b, ρ) =
1

2
ρ2(1− ρ)

∂2

∂ρ2
P (b, 0+) + ρ3 exp

(
−

2E [σ]

E [σ2]
b

)
(17)

and the latter leads to the 2nd order approximant

Pρ [q > b] ≈ F̂2((1− ρ) b, ρ), c = 1, (18)

where Proposition 3.1(b) is used to supply the second partial derivative in (17).

Next, we briefly deal with moment approximations. We restrict attention to the case
c = 1 and consider only the queue length first and second moment. The relevant light traffic
limits are given by (3), (5) and (6). In heavy traffic it can be inferred from (7) that

lim
ρ→1

(1− ρ)m Qm(ρ) = m!

(
E [σ2]

2E [σ]

)m
, m = 1, 2, . . . .

Moment interpolations are then developed in very much the same manner as distribution
interpolations. We skip the details of the derivation and list the final expressions

Q1(ρ) =
E [σ2]

2E [σ]

ρ2

1− ρ
, c = 1 (19)

and

Q2(ρ) ≈
ρ2

4(1− ρ)2

(
ρ

(
E [σ2]

2

E [σ]2
− 1

)
+

E [σ2]
2

E [σ]2
+ 1

)
, c = 1. (20)
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We stress that formula (19) is in fact exact. This is a result whose continuous time analog has
been established for a more general fluid model in [14, p. 23]. On the contrary (20) cannot
be exact. To verify this consider the example where σ = 1 deterministic. This corresponds
to i.i.d. Poisson arrivals, for which a probability generating function of the queue length rv
is available. It can be shown [15] that the exact expression is

Q2(ρ) =
ρ2

6(1− ρ)2
(ρ2 − ρ+ 3), c = 1, σ = 1 a.s.

a formula that clearly cannot be recovered using only two light traffic derivatives. Still, when
σ = 1 approximation (20) is within 9% of the correct value, for all traffic intensities.

We close this section with a comment. Recall that each active source in the M |G|∞
arrival process generates one information unit per time slot. So, c = 1 corresponds to the
case where the amount of service in one slot is exactly equal to the amount of information
that one active source generates in one slot. When c = 1 a single active source suffices to
make full use of the server capacity; in this system there is never any leftover capacity to
simultaneously serve more than one sources. On the contrary, when c > 1, the server can
attend to more than one sources during one time slot, so that there is a multiple service
feature to the system behavior. An exact or approximate analysis in this regime is clearly
more challenging.

5 Numerical Results

To gauge the accuracy of the proposed expressions we carry out simulation experiments
choosing various distributions for the burst duration rv σ. The experimental values are
obtained by regenerative simulation and relative widths accompanying them correspond to
95% confidence intervals. We confine ourselves to the simple situation where the multiplexer
release rate is c = 1. While the list of examples below is not exhaustive, it does serve
to illustrate the ability of the heavy–light traffic interpolation to “ballpark” the true tail
probabilities, as well as its limitations.

Deterministic When the burst duration is deterministic, σ = D a.s., D = 1, 2, . . .,
approximation (18) reads

Pρ [q > b] ≈
ρ2(1− ρ)

2D2

(
3[D − (1− ρ)b]+([D − (1− ρ)b]+ − 1)

+ 1 [D > (1− ρ)b]) + ρ3 exp
(
−

2

D
(1− ρ)b

)
, b = 0, 1, . . . .

We let the burst duration be σ = 3 and obtain simulation estimates for the steady state
probability Pρ [q∞ > 0]. In this case an explicit expression for Pρ [q∞ > 0] is available [15].
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Tail probability P [q∞ > 0]
ρ Exact Simulation Approximation Error (%)

0.1 1.0478e-02 1.0469e-02±0.2% 1.0500e-02 –0.21
0.2 4.1622e-02 4.1668e-02±0.3% 4.1778e-02 –0.38
0.3 9.3042e-02 9.3020e-02±0.2% 9.3500e-02 –0.49
0.4 1.6441e-01 1.6442e-01±0.2% 1.6533e-01 –0.56
0.5 2.5545e-01 2.5533e-01±0.2% 2.5694e-01 –0.58
0.6 3.6594e-01 3.6607e-01±0.1% 3.6800e-01 –0.56
0.7 4.9573e-01 4.9601e-01±0.1% 4.9817e-01 –0.49
0.8 6.4470e-01 6.4488e-01±0.1% 6.4711e-01 –0.37
0.9 8.1279e-01 8.1264e-01±0.1% 8.1450e-01 –0.21

Table 1: P [q∞ > 0] for deterministic burst duration σ = 3.

In Table 1 we list simulation estimates, numerical values from the exact formula and from
the light–heavy traffic interpolation. A comparison of the exact values to the light–heavy
traffic interpolation shows that, in this case, the agreement is excellent. Since we expect
the approximation to be asymptotically exact at the endpoints ρ = 0 and ρ = 1, it is not
surprising that the largest errors occur in moderate traffic.

Tail probability Pρ [q > 4]
ρ Simulation Approximation Error (%)

0.1 1.1271e-04±1.7% 9.0718e-05 19.51
0.2 1.3444e-03±1.7% 9.4753e-04 29.52
0.3 6.1736e-03±0.9% 5.9952e-03 2.89
0.4 1.9246e-02±0.6% 1.4415e-02 25.10
0.5 4.7745e-02±0.5% 3.9894e-02 16.44
0.6 1.0292e-01±0.4% 9.5777e-02 6.94
0.7 2.0035e-01±0.3% 1.9757e-01 1.39
0.8 3.6093e-01±0.3% 3.6379e-01 –0.79
0.9 6.1407e-01±0.3% 6.1902e-01 –0.81

Table 2: Pρ [q > 4] for deterministic burst duration σ = 3.

In the same setup, we next consider the tail probability Pρ [q > 4]. From Table 2 we
see that although the approximation yields estimates in the correct order of magnitude,
the errors are substantial when not in the moderate–to–heavy traffic regime. This can be
explained as follows: When σ = 3, in order for the queue to build up to 4 at least 3 sources
should be simultaneously active. Note that the light traffic component of the approximation
consists of the second derivative, which can be obtained by considering sample paths with
at most two source arrivals in the system. Thus, any effects due to the activation of more
than two sources are not adequately accounted for in light traffic.
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Uniform Specializing (18) to the case where σ is uniformly distributed, P [σ = n] = 1/M ,
n = 1, 2, . . . ,M, yields

Pρ [q > b] ≈ 1 [M > (1− ρ)b]
ρ2(1− ρ)

3M2(M + 1)2

(
1 + 5(M − (1− ρ)b)2

)
×(M − (1− ρ)b)2 + ρ3 exp

(
−6

(1− ρ)b

2M + 1

)
, b = 0, 1, . . . .

Tail probability Pρ [q > b]
Buffer size Simulation Approximation Error (%)

0 4.4907e-02±0.2% 4.5333e-02 –0.95
2 1.1747e-02±0.5% 1.1399e-02 2.97
5 1.4543e-03±1.4% 9.7380e-04 33.04
8 1.9456e-04±3.7% 2.4379e-04 –25.30
10 5.1620e-05±7.0% 1.0186e-04 –97.31

Table 3: Traffic intensity ρ = 0.2; σ ∼ uniform(1, 5).

For M = 5 we compare simulation vs approximation in Tables 3 and 4, for traffic in-
tensities ρ = 0.2 and ρ = 0.8 respectively. Once more, the approximation is very sharp
for small buffer sizes. As the buffer size increases beyond the maximum burst length and
the true probabilities become smaller, the approximation lingers on in the correct order of
magnitude, but it clearly deteriorates away from heavy traffic. Eventually, as the buffer size
tends to infinity, the interpolation approximation overestimates the actual probabilities.

Tail probability Pρ [q > b]
Buffer size Simulation Approximation Error (%)

0 6.5489e-01±0.1% 6.6133e-01 –0.98
10 2.0086e-01±0.4% 1.9161e-01 4.60
20 6.3303e-02±0.9% 5.8057e-02 8.29
30 1.9964e-02±1.7% 1.9406e-02 2.79
40 6.2827e-03±3.1% 6.5188e-03 –3.75
50 1.9703e-03±5.6% 2.1897e-03 –11.13

Table 4: Traffic intensity ρ = 0.8; σ ∼ uniform(1, 5).

Geometric Taking σ to follow a geometric distribution, P [σ > n] = pn, n = 0, 1, . . ., we
obtain from (18) that

Pρ [q > b] ≈
ρ2

2
(1− ρ)(1 + p)2p2(1−ρ)b + ρ3 exp

(
−2

1− p

1 + p
(1− ρ)b

)
, b = 0, 1, . . .
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Figure 1: Geometric p = 0.8 burst duration.

As an example we set p = 0.8 and plot simulated and approximate values in Figure 1, for
traffic intensities ρ = 0.1, 0.4, 0.6 and 0.9. In all cases confidence interval widths were within
10% of the mean and are not shown. The linear decrease of the simulated values suggests
an exponential decay of the queue length distribution, in agreement with large deviations
results. Figure 1 clearly indicates that the heavy–light traffic interpolation is sufficient for
providing rough estimates for a wide range of probabilities and buffer sizes.

6 Extensions

It is apparent from the developments of Section 3 that the light traffic results, as stated in
Proposition (3.1), do not cover several interesting distributions belonging to the subexpo-
nential family. Such is for example the lognormal distribution, which violates Assumption
(A) despite having finite kth moment for every k = 0, 1, . . .. It is natural to expect that

Assumption (A) can be relaxed to require that E
[
σk
]

be finite, for appropriate k > 2, in

order for Proposition (3.1) to go through. This would still not address the case of long–range
dependence, for which E [σ2] =∞. We present some heuristics below.

Long–range dependence For the Pareto distribution P [σ > n] = n−α, n = 1, 2, . . .,
1 < α < 2, not only Assumption (A) fails, but, as mentioned in Section 3, (6) yields
infinity. This suggests that Pρ [q > b] may not be an analytic function of ρ under long–range
dependence. When c = 1 simulation work in light traffic does not preclude the possibility that

12



lim
ρ→0

ρ−αPρ [q > b] is the sought after non-trivial limit. On the other hand, the heavy traffic

result of Proposition 3.2(b) hints at developing an approximation around the normalized rv
(1− ρ)1/(α−1) q. These considerations lead us to postulate that, when c = 1,

lim
ρ→0

ρ−αPρ [q > b] = K(b), (21)

for some unknown mapping K : IR+ → IR+. Then, taking advantage of Proposition 3.2(b)
we propose the approximant

Pρ [q > b] ≈ Eα−1

(
−

(α− 1)E [σ]

Γ(2− α)

1− ρ

ρα
bα−1

)
, c = 1. (22)

This expression is in agreement with the heavy traffic limit (8). In addition, from the
Mittag–Leffler function asymptotics given in [5, p. 207], we have

Eα−1(−x) ∼
1

x

1

Γ(2− α)
(x→∞)

which ensures that, as ρ→ 0, approximation (22) conforms with the conjectured light traffic
limit (21).

Assessing the performance of (22) requires numerical evaluation of the Mittag–Leffler
function. In general, calculation based on the series expansion (9) is not recommended.
Instead, one can invert the Laplace transform of the Mittag–Leffler law by contour integration
along a suitably chosen path in the complex plane. Doing so [15] we arrive at the alternate
expression

Eν(−x) =
sin(νπ)

νπ

∫ π/2

0

e−(x tan θ)1/ν

1 + sin(2θ) cos(νπ)
dθ, x ≥ 0, 0 < ν < 1,

which is evaluated by numerical integration. We then test approximation (22) for traffic
intensities ρ = 0.2, 0.5 and 0.8. Under long–range dependence simulation estimates converge
very slowly; moreover confidence intervals based on the regenerative method cannot be
constructed, because the underlying period has infinite variance. In the results shown the
runs were 109 time slots long, and by that time the estimates had stabilized. The log–log
scale plots in Figures 2 and 3 correspond to two Pareto distributions with parameters α = 1.5
and α = 1.7. Observe that the heavier α = 1.5 Pareto tail induces larger tail probabilities
than α = 1.7, at the same traffic intensities. In both Figures 2 and 3 we see that simulated
and approximate values are very close, suggesting that expression (22) provides a satisfactory
approximation. Note also the almost linear shape of the curves in log–log scale, reflecting
the power law asymptotics of the queue size distribution announced in [7, 8, 9].
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